Experimentalists endeavour to recreate deformation structures observed in nature under controlled stress conditions. The pioneering research of Ernest Masson Anderson, dating back to the start of the twentieth century, underlines the importance of understanding the processes leading to the folding and fracturing of rocks. His strong belief that numerical and experimental models are essential for advancing our knowledge of structural geology is as relevant today as it was when he first proposed his ideas. The text provides a selection of experimental summaries. The presented solutions are rooted in the fundamentals of structural geology and demonstrate how experimental models can be used to test hypotheses and develop a deeper understanding of the processes that shape the Earth's crust.

The Bulletin of Mineral Research and Exploration serves as a platform for the exchange of ideas and knowledge, enabling researchers to share their findings and insights with the broader scientific community. This publication highlights the importance of empirical research in advancing the field of structural geology and underscores the role of experimental models in facilitating our understanding of complex geological phenomena. By providing a comprehensive account of the experimental methods employed in the study of structural geology, the text serves as a valuable resource for students, researchers, and professionals alike, offering a unique perspective on the evolution of the Earth's crust and the forces that drive geological processes.